Publications

You may find these publications very useful.

Our researchers are encouraged to provide input on a variety of research projects.  Below are some of the resulting papers:

PAPERS BY Dr. Johanna Choumert Nkolo:

Choumert-Nkolo J, Cust H, Taylor C. Using paradata to collect better survey data: Evidence from a household survey in Tanzania. Rev Dev Econ. 2019;00:1–21. Available here.

Choumert Nkolo, J. Developing a Socially Inclusive and Sustainable Natural Gas Sector in Tanzania. Energy Policy (2018), 118, 356–371.  Available here.

Choumert Nkolo, J., Combes Motel, P., Guegang Djimeli, C., 2018. Income-generating Effects of Biofuel Policies: A Meta-analysis of the CGE Literature. Ecological Economics 147, 230–242. Available here.

Phélinas, P., Choumert, J., 2017. Is GM Soybean Cultivation in Argentina Sustainable? World Development 99, 452-462  Available here.

Kere, E.N., Choumert, J., Combes Motel, P., Combes, J.L., Santoni, O., Schwartz, S., 2017. Addressing Contextual and Location Biases in the Assessment of Protected Areas Effectiveness on Deforestation in the Brazilian Amazônia. Ecological Economics 136, 148–158.  Available here

Choumert, J., Phélinas, P., 2016. Farmland Rental Prices in GM Soybean Areas of Argentina: Do Contractual Arrangements Matter? The Journal of Development Studies 1–17. doi:10.1080/00220388.2016.1241388.  Available here

Choumert, J., Laré, A.L., Kéré N.E., 2016. A Multi-Level Housing Hedonic Analysis of Water and Sanitation Access. Economics Bulletin 36, 1010–1037.  Available here

Choumert, J., Motel, P.C., Millock, K., 2015. Climate change mitigation and adaptation in developing and transition countries: introduction to the special issue. Environment and Development Economics 20, 425–433Available here.

Read Abstract

While mitigation efforts in developed and emerging economies are necessary in order to meet ambitious climate targets, the international community strives to explore strategies to help the most vulnerable populations to cope with the short-term and long-term impacts of climate change. In the perspective of the 21st COP of the UNFCCC (Paris, December 2015), this Special Issue on ‘Climate change mitigation and adaptation in developing and transition countries’ addresses two complementary topical issues. On the one hand, migration – international and internal – and remittances are analyzed as adaptation strategies for vulnerable households and individuals. On the other hand, climate policies in emerging economies are examined in light of their distributional impacts for households and of the strategic issues they may raise. This special issue introduces five papers with a diversity of approaches, e.g., game theory, econometric modeling and computable general equilibrium (CGE) modeling.

WORKING PAPERS

A spatial econometric approach to spillovers effects between protected areas and deforestation in the Brazilian Amazon. CERDI Working Paper (2014) (with Amin A., Combes JL., Combes P, Kéré E., Ongono J. & Schwartz S.)

Stacking up the Ladder: A Panel Data Analysis of Tanzanian Household Energy Choices. FAERE Working Paper 2017.28. (2017) (with Combes P. & le Roux L.) Download pdf

Using paradata to collect better survey data : Evidence from a household survey in Tanzania. Working Paper (2017) (with Cust H. & Taylor C.)

Volcanic hazards, land and labor. Études et Documents, n° 9, CERDI. (2018) (with Phélinas, P.)

Does the Expansion of Biofuels Encroach on Forests? FAERE Working Paper, 2017.24. (2017) (with Keles D., Combes P., Kere E.)

What Fuels Environmental Attitudes in Natural Gas Regions in Tanzania? (2017)

Nouveaux paradigmes d’élaboration des enquêtes ménage dans les pays du Sud. Working Paper (2018) (with Phélinas, P.)

TO LINK TO JOHANNA’S FORMER PUBLICATIONS CLICK HERE


 

PAPERS BY Dr. Joachim De Weerdt:

Published Work:

TITLE
CO-AUTHORS

JOURNAL OR VOLUME
(impact factor if bio-medical journal)

YEAR
What Does Variation in Household Survey Methods Reveal About the Nature of Measurement Errors in Consumption Estimates? download working paper

John Gibson, Kathleen Beegle & Jed Friedman

Oxford Bulletin of Economics and Statistics Forthcoming Also Policy Research Working Paper Series, WPS6372, World Bank 2014
Urbanization and Poverty Reduction – The Role of Rural Diversification and Secondary Towns download pdf Luc Christiaensen & Yasuyuki Todo Agricultural Economics Vol. 44: 447-459 2013
Improving Consumption Measurement and other Survey Data through CAPI: Evidence from a Randomized Experiment  download pdf,  journal version Bet Caeyers & Neil Chalmers Journal of Development Economics Vol. 98: 19–33 2012

Methods of household consumption measurement through surveys: Experimental results from Tanzania download pdf

Kathleen Beegle, Jed Friedman & John Gibson Journal of Development Economics Vol. 98: 3-18. Also Policy Research Working Paper Series, WPS5501, World Bank 2012

Migration and Economic Mobility in Tanzania: Evidence from a Tracking Survey download pdf

Kathleen Beegle & Stefan Dercon Review of Economics and Statistics
Vol 93, Issue 3, 1010-1033
2011

 


 

Friedman, J., Beegle, K., De Weerdt, J., Gibson, J. 2017. “Decomposing response error in food consumption measurement: Implications for survey design from a randomized survey experiment in Tanzania” Food Policy Vol. 72, 94-111 Available here

Kathleen Beegle, Joachim De Weerdt, and Stefan Dercon, 2011. Migration and Economic Mobility in Tanzania: Evidence from a Tracking Survey. The Review of Economics and Statistics, Vol. 93, No. 3, pp. 1010–1033. Read book at google books; Read book at issuu

Marcel Fafchamps and Joachim De Weerdt, 2011. Social Identity and the Formation of Health Insurance Networks, Journal of Development Studies, 47(8): 1152-1177. Download pdf

Kathleen Beegle Stefan Dercon The World Bank Chapter 2 in Jennica Larrison, Edmundo Murrugarra and Marcin Sasin (eds) “Migration and Poverty: Towards Better Migration Opportunities For the Poor”, pages 13-34 2011 Orphanhood and Human Capital Destruction: Is there Persistence into Adulthood? Download pdf / Journal version

De Weerdt. J., 2010, Moving out of Poverty in Tanzania: Evidence from Kagera. Journal of Development Studies Vol. 46(2): 331-349 Download pdf / Download journal article / Global study website. See also: ID21 summary

Kathleen Beegle, Joachim De Weerdt, Stefan Dercon. 2008. The Intergenerational Impact of the African Orphans Crisis: A Cohort Study from an HIV/AIDS Affected Area. International Journal of Epidemiology (impact factor = 6.41) Vol. 38(2):561-568. Download pdf

Beegle,K., De Weerdt. J., 2008 Methodological Issues in the Study of the Socioeconomic Consequences of HIV/AIDS AIDS (impact factor = 6.25), Vol. 22, Suppl 1: S89-94. Download pdf

Kathleen Beegle, Joachim De Weerdt,  Stefan Dercon , “Adult Mortality and Consumption Growth in the Age of HIV/AIDS,” Economic Development and Cultural Change 56, no. 2 (January 2008): 299-326. Download pdf

De Weerdt, J. (2008), Field notes on administering shock modules. Journal of International Development., 20: 398–402.  Download pdf

Joachim De Weerdt, Stefan Dercon, Tessa Bold and Alula Pankhurst. “Membership Based Indigenous Insurance Associations in Ethiopia and Tanzania” p. 157-176 in Martha Chen, Renana Jhabvala, Ravi Kanbur and Carol Richards (eds.), Membership Based Organizations of the Poor. London: Routledge, 2007. 376 p. Download Brief Volume Overview / View/buy book at Routledge

De Weerdt, J., and Dercon, S., 2006. Risk-sharing Networks and Insurance Against Illness Journal of Development Economics 81 337–356. Download pdf / On-line at science direct

Beegel,  K.,  De Weerdt, J., and Dercon, S., 2006. Orphanhood and the Long-run Impact on Children, American Journal of Agricultural Economics. Vol. 88, No. 5: 1266-1277Download pdf

Dercon,  S., De Weerdt, J., Bold, T., Pankhurst, A., 2006. Group-based Funeral Insurance in Ethiopia and Tanzania. World Development Vol. 34, No. 4: 685-703. Download pdf

De Weerdt, Joachim. 2004. Risk-Sharing and Endogenous Network Formation. Chapter 10 in Dercon, Stefan (ed.) “Insurance against Poverty”, Oxford University Press, pp. 197-216. Download. The same article appeared originally in 2002 as a WIDER working paper – download.

Commissioned Work:

TITLE CO-AUTHORS Organisation/Series YEAR
Mobility Pays download pdf None  Series Rural 21 2011
Extending Insurance? Funeral Associations in Ethiopia and Tanzania download pdf Stefan Dercon, Tessa Bold,
and Alula Pankhurst
Research programme on:
Social Institutions and Dialogue, OECD, No. 240
2004
Measuring Risk Perceptions: Why and How download pdf None Social Protection Discussion Paper No.:0533, World Bank 2005
Adoption of Superior Banana Varieties in the Kagera Region: accomplishments and constraints download pdf None Kagera Community Development Programme 2003
Community Organisations in Rural Tanzania: a Case Study of the Community of Nyakatoke download pdf None Belgian Government (BTC) 2001
Poverty in Tanzania University of Leuven & EDI

Policy Preparatory Report, BVO/97.2, DGIS, Belgian Government

1997
 

CWIQ reports, (for dozens of Tanzanian districts – for a complete list of reports click here, Tanzania’s Prime Minister’s Office – Regional Administration and Local Goverance, Netherlands Embassy and SNV

Currently working on:

De Weerdt, Joachim; Hirvonen, Kalle. 2013. Risk Sharing and Internal Migration. Policy Research Working Paper; No. 6429. World Bank, Washington, DC. Access here

De Weerdt, Joachim; Beegle, Kathleen; Friedman, Jed and Gibson, John. 2014. The Challenge of Measuring Hunger. Policy Research Working Paper; No. WPS6736. World Bank, Washington, DC.  Access here. See also blog posts at VoxEU and Development Impact

Dillon, Brian; De Weerdt, Joachim and O’Donoghue, Ted. 2014. Inter-household Variation in Prices: Who Pays More and Why? World Bank and University of Waikato.  Download pdf.

De Weerdt, Joachim; Genicot, Garance and Mesnard, Alice. 2014. Asymmetry of Information and Transfers within Extended Family Networks IZA Working Paper No.: 8395CReAM Discussion Paper 33/14, CEPR Discussion Paper 10125

Insurance and Re-insurance Markets in Rural Tanzania, with Quy-Toan Do (World Bank) and Markus Goldstein (World Bank)

De Weerdt, Joachim and Dirk Van de Gaer (University of Ghent). 2005. Disentangling Networks: Defining and Analysing Cohesive Subgroups. download pdf

 

2018

Mbiti, I., Romero, M., Schipper, Y., (2018) The Challenge of Designing Effective Teacher Performance Pay Programs: Experimental Evidence from Tanzania North East Universities Development Conference 2018 Accessible here

Ambler, K., Jones, K., O’Sullivan, M. (2018) What is the Role of Men in Connecting Women to Cash Crop Markets? Evidence from Uganda IFPRI Discussion Paper 01762 Accessible here

Gazeaud J. (2018) “Proxy Means Testing vulnerability to measurement errors?”, Études et Documents, n° 12, CERDI. Accessible here

Ayala Wineman and Lenis Saweda Liverpool-Tasie, 2018 “All in the Family: Bequest Motives in Rural Tanzania” Economic Development and Cultural ChangeAccessible here

2017

Mbiti, I., Muralidharan, K., Romero, M., Schipper, Y. 2017 Designing Teacher Performance Pay Programs: Experimental Evidence from Tanzania.  Download PDF

2016

Rahija, M., Mwisomba, T., Abassy Kamwe, M., Muwonge, J., Pica-Ciamarra, U. 2016 “Are CAPI based surveys a cost-effective and viable alternative to PAPI surveys? Evidence from agricultural surveys in Tanzania and Uganda. Seventh International Conference on Agricultural Statistics.

Evans, D, Holtemeyer, B and Kosec, K, 2016, Evaluating the effectiveness of community-managed conditional cash transfer program in Tanzania, 3ie Grantee Final Report. New Delhi: International Initiative for Impact Evaluation (3ie)

2015

Cornelis Maaskant.  “Risk Sharing within Geographically Spread Extended Families: Evidence from Rural Tanzania“, June 2015. MSc Thesis, University of Oxford.

Paul Gertler; Manisha Shah; Maria Laura Alzua; Lisa Cameron; Sebastian Martinez; Sumeet Patil.  “How does Health Promotion Work?  Evidence from the Dirty Business of Eliminating Open Defecation.” NBER Working Paper No. 20997, March 2015.  PLEASE NOTE: EDI collected the endline data and not the baseline data for this WSP project.

Link here (NBER subscription required)

2013

Amsterdam Institute for International Development and Amsterdam Institute for Global Health and Development. (2013). “Impact Evaluation of HIF-supported Health Insurance Projects in Tanzania: Baseline Report KNCU Health Plan”

2012

Yadav, P., Cohen, J., Alphs, S., Arkedis, J., Larson, P., Massaga, J. and Sabot, O. 2012 “Trends in availability and prices of subsidized ACT over the first year of the AMFm: evidence from remote regions of Tanzania” Malaria Journal 11:299
Download PDF

Quin, S. and Fafchamps, M. 2012. “Results of Sample Surveys of Firms”, chapter 5 in Dinh, H. and Clarke, G. (eds) Performance of Manufacturing Firms in Africa: an empirical analysis, The World Bank, Washington DC.
Download Book

Dillon, Andrew & Bardasi, Elena & Beegle, Kathleen & Serneels, Pieter. 2012. “Explaining Variation in Child Labor Statistics”. Journal of Development Economics, 98 (1): 136-147.

Caeyers, B., Chalmers, N. and De Weerdt, J. 2012. “Improving Consumption Measurement and other Survey Data through CAPI: Evidence from a Randomized Experiment”, Journal of Development Economics 98:19-33
Download PDF

Beegle, K., De Weerdt, J., Friedman J. and Gibson, J. “Methods of Household Consumption Measurement through Surveys: Experimental Results from Tanzania”, Journal of Development Economics 98:3-18
Download PDF

 

2011

De Weerdt, J. “Mobility Pays”, Rural 21, January 2011 edition (popularizing article, summarizing some of the technical work on migration listed below)
Download PDF

Dillon, B. 2011. “Using Mobile Phones to Collect Panel Data in Developing Countries”. Journal of International Development. 24(4): 518–527

Beegle, K., De Weerdt, J. and Dercon. 2011. “Migration and Economic Mobility in Tanzania: Evidence from a Tracking Survey”. Review of Economics and Statistics 93(3): 1010–1033

De Weerdt, J. and Fafchamps, M. 2011. “Social Identity and the Formation of Health Insurance Networks”. Journal of Development Studies 47(8): 1152-1177

Beegle, K., De Weerdt, J. and Dercon. 2011 “Patterns of Migration in Tanzania”. Chapter 2 in Jennica Larrison, Edmundo Murrugarra and Marcin Sasin (eds) “Migration and Poverty: Towards Better Migration Opportunities For the Poor”,The World Bank

 

2010

Mother Is ‘More Essential’ to Orphans Than Breadwinner Father, Research Suggests
Science Daily

Kathleen Beegle, Joachim De Weerdt and Stefan Dercon 2010. “Orphanhood and Human Capital Destruction: Is there Persistence into Adulthood?” Demography, Vol. 47(1): 163-180
Download PDF

Joachim De Weerdt. 2010.”Moving out of Poverty in Tanzania: Evidence from Kagera” Journal of Development Studies, Vol. 46(2): 331-349
Download PDF

 

2009

Moving Away from Home and Away from Poverty – Kathleen Beegle, Joachim De Weerdt and Stefan Dercon
Contribution to Dilip Ratha’s “People Move” Blog
Go to Blog Entry

Kathleen Beegle, Joachim De Weerdt and Stefan Dercon. 2008. “The Intergenerational Impact of the African Orphans Crisis: A Cohort Study from an HIV/AIDS Affected Area” International Journal of Epidemiology, Vol. 38(2):561-568
Download PDF

 

2008

Beegle, K., De Weerdt, J. and Dercon, S. 2008. “Migration and Economic Mobility in Tanzania: Evidence from a Tracking Survey”. Policy Research Working Paper, WPS 4798, World Bank, Washington DC.
Go to Download Site

Kathleen Beegle and Joachim De Weerdt. 2008. “Methodological Issues in the Study of the Socioeconomic Consequences of HIV/AIDS” AIDS 22, Supp 1 pp. S89-94
Download PDF

Kathleen Beegle, Joachim De Weerdt and Stefan Dercon. 2008. “Adult Mortality and Economic Growth in the Age of HIV/AIDS” Economic Development and Cultural Change, Vol. 56, No. 2: 299-326
Download PDF

Joachim De Weerdt. 2008. “Field Notes on Administering Shock Modules” Journal of International Development, Vol. 20, pp. 398-402
Download PDF

 

2007

Membership-Based Indigenous Insurance Associations – Joachim De Weerdt, Stefan Dercon, Tessa Bold and Alula Pankhurst
Download PDF
in: Martha Chen, Renana Jhabvala, Ravi Kanbur, Carol Richards (eds.), “Membership Based Organisations of the Poor”, Routledge Download Brief Volume Overview
View / Buy book at Routledge

Moving out of Poverty in Tanzania’s Kagera Region
ID21 Research Highlight

 

2006

Stefan Dercon and Joachim De Weerdt. 2006. “Risk-Sharing Networks and Insurance Against Illness” Journal of Development Economics, Vol. 81, No. 2, pp. 337-356.
Download PDF
On-line at Science Direct

Stefan Dercon, Tessa Bold, Joachim De Weerdt and Alula Pankhurst. 2006. “Group-Based Funeral Insurance in Ethiopia and Tanzania”, World Development, Vol 34, Issue 4, pp. 685-703
Download PDF

Kathleen Beegle, Joachim De Weerdt and Stefan Dercon 2006. “Orphanhood and the Long-Term Impact on Children”, American Journal of Agricultural Economics, Vol. 88, No. 5, pp. 1266-1277.
Download PDF

 

2005

CWIQ Comparative Study: Comparison of 16 Baseline Surveys on Poverty, Welfare and Services in Selected Districts in Kagera, Shinyanga and Northern Highlands – Joachim De Weerdt, Tadeo Rweyemamu and James Mitchener
Download PDF

Kondoa CWIQ Baseline Survey on Poverty, Welfare and Services in Rural Shinyanga Districts – Sonya Krutikov, Joachim De Weerdt, and James Mitchener
Download PDF

Mbulu CWIQ Baseline Survey on Poverty, Welfare and Services in Rural Shinyanga Districts – Sonya Krutikov, Joachim De Weerdt and James Mitchener
Download PDF

Monduli CWIQ Baseline Survey on Poverty, Welfare and Services in Rural Shinyanga Districts – Sonya Krutikov, Joachim De Weerdt and James Mitchener
Download PDF

Karatu CWIQ Baseline Survey on Poverty, Welfare and Services in Rural Shinyanga Districts – Sonya Krutikov, Joachim De Weerdt and James Mitchener
Download PDF

Measuring Risk Perceptions: Why and How – Joachim De Weerdt Social Protection Discussion Papers Series, No. 0503, World Bank, Washington DC
Download PDF

Membership-Based Indigenous Insurance Associations – Joachim De Weerdt, Stefan Dercon, Tessa Bold and Alula Pankhurst, Forthcoming in Kanbur, R. (ed.), “Membership Based Organisations of the Poor”, Routledge.
This edited volume grew from a conference organised by Cornell University and SEWA. Other contributions can be found on the conference website

 

2004

Risk-Sharing and Endogenous Network Formation – Chapter 10 in “Insurance against Poverty”, ed. Stefan Dercon Oxford University Press, 2004
Download Paper
Other contribution to this book can be found here

Rural Income Dynamics in Kagera Region, Tanzania – Flora Kessy
Download

Rural Shinyanga CWIQ Baseline Survey on Poverty, Welfare and Services in Rural Shinyanga Districts – Sonya Krutikov, Joachim De Weerdt, Tadeo Rweyemamu and James Mitchener
Download

Kagera Rural CWIQ Baseline Survey on Poverty, Welfare and Services in Kagera Rural Districts – Sonya Krutikov and Joachim De Weerdt
Download

 

2003

Adoption of Superior Banana Varieties in the Kagera Region: Accomplishments and Constraints – Joachim De Weerdt
Download PDF

Disentangling Networks: Defining and Analyzing Cohesive Subgroups – Joachim De Weerdt and Dirk Van de Gaer
paper presented at the 2003 ESEM in Stockholm
Download

 

2002

Community Organisations in Rural Tanzania: A Case Study of the Community of Nyakatoke, Bukoba Rural District – Joachim De Weerdt
Download

This page intends to keep track of on-going and completed work using the KHDS data set.

 

Research Papers Using the Long-term Panel

  1. Maystadt, Jean-Francois and Gilles Duranton. 2018. The Development Push of Refugees: Evidence from Tanzania. Journal of Economic Geography (2018):1-36.  Access here.
  2. Kofol, Chiara and Maryam Naghsh Nejad. 2017. Child Labor and the Arrival of Refugees: Evidence from Tanzania. IZA Discussion paper No. 11242.  Access here.
  3. Joachim De Weerdt, Kathleen Beegle and Stefan Dercon. 2017. “Orphanhood and Self-esteem: an 18-year longitudinal study from an HIV affected area in Tanzania.” JAIDS Journal of Acquired Immune Deficiency Syndromes 76(3) 225-230. Access here
  4. Adhvaryu, Achyuta and Anant Nyshadham. 2017. “Health, Enterprise, and Labor Complementarity in the Household.” Journal of Development Economics 126: 91-111. Access here
  5. Christiaensen, Luc, Joachim De Weerdt, and Ravi Kanbur. 2017. “Mchango wa Miji Midogo Katika Kuleta Maendeleo na Kuondoa Umaskini Tanzania.” IGC Policy Brief.
  6. Ruiz, Isabel and Carlos Vargas-Silva. 2017. “The Impact of Hosting Refugees on the Intra-household Allocation of Tasks: A Gender Perspective.” UNU-WIDER Working Paper 2017/66. download
  7. Christiaensen Luc, Joachim De Weerdt, Bert Ingelaere and Ravi Kanbur. “Why Secondary Towns Can Be Important for Poverty Reduction – A Migrant’s Perspective.” Policy Research Working Paper 8193. World Bank Jobs and Development Blog.
  8. De Weerdt, Joachim, Garance Genicot, and Alice Mesnard. 2017. “Asymmetry of Information within Family Networks.” Journal of Human Resources (forthcoming)
  9. Christian, Paul and Brian Dillon. 2018. “Growing and Learning When Consumption Is Seasonal: Long-Term Evidence From Tanzania.” Demography Volume 55, Issue 3, pp 1091–1118 Access here
  10. Christiaensen, Luc, Joachim De Weerdt, and Ravi Kanbur. “Where to Create Jobs to Reduce Poverty: Cities or Towns.” World Bank Policy Research Working Paper 8069 and  IGC Working Paper C-40300-TZA-1.
  11. Martuscelli, Antonio. 2016. “Analysing the Impact of Price Shocks in Rural Economies: Do Household Responses Matter?” The Journal of Development Studies 53(9):1518-1534. Access here
  12. Burrone, Sara, and Gianna Claudia Giannelli. 2016. “Child Labor and Labor Market Outcomes in Tanzania: A Gender Perspective.” download
  13. Adhvaryu, Achyuta, Namrata Kala, and AnantNyshadham. 2016. “Booms, Busts, and Household Enterprise: Evidence from Coffee Farmers in Tanzania.” download
  14. Kudo, Yuya. 2016. “Why Is Levirate Marriage Eroding in Africa? HIV/AIDS as an Agent of Institutional Change.” Mimeo Development Studies Center, Institute of Developing Economies. download
  15. Pietrelli, Rebecca and Pasquale Scaramozzino. 2016. “Internal Migration and Vulnerability to Poverty in Tanzania.” Centre for Financial and Management Studies Discussion Paper 133. download
  16. Christiaensen, Luc, Joachim De Weerdt, and Ravi Kanbur. “Urbanisation and Poverty Reduction.” A position paper prepared for The Planning Commission, President’s Office. download or IOB Analysis and Policy Paper version.
  17. Pantaleo, Innocent. 2016. Poverty Dynamics in Kagera Region 1991-2010PhD Thesis, University of Dar es Salaam, Tanzania.
  18. De Weerdt, Joachim and Kalle Hirvonen. “Risk Sharing and Internal Migration.” Economic Development and Cultural Change 65(1):63-86. download
  19. Hirvonen, Kalle. 2016. “Temperature Changes, Household Consumption and Internal Migration: Evidence from Rural Tanzania. ”American Journal of Agricultural Economics 98(4): 1230-1249.
  20. Corno,Lucia and Alessandra Voena. 2016. “Selling Daughters: Age of Marriage, Income Shocks and the Bride Price Tradition.” IFS Working Paper W16/08
  21. Counts, Christopher J. and Jolene Skordis-Worrall. 2016. “Recognizing the importance of chronic disease in driving healthcare expenditure in Tanzania: analysis of panel data from 1991 to 2010.” Health Policy and Planning 31(4): 434-443. Access here
  22. Moradi, Alexander and Kalle Hirvonen. 2016. “The African Enigma: The mystery of tall African adults despite low national incomes revisited.” In J. Komlos & I. R. Kelly (Eds.), The Oxford Handbook of Economics and Human Biology. Oxford: Oxford University Press. Access here
  23. Ruiz, Isabel and Carlos Vargas-Silva. 2016. “The Labour Market Consequences of Hosting Refugees.” Journal of Economic Geography 16(3): 667-694. Access here
  24. Dimova, Ralitz, Gil Epstein, and Ira Gang. 2015. “Migration, Transfers and Child Labor”. Review of Development Economics 19(3):735-747. Access here
  25. Krutikova, Sonya and Helene Bie Lilleør.2015. “Fetal Origins of Personality: Effects of Early Life Circumstances on Adult Personality Traits.” Oxford University CSAE Working Paper 2015-03. Access here
  26. Alam, Shamma Adeeb. 2015. “Parental Health Shocks, Child Labor and Educational Outcomes: Evidence from Tanzania.” Journal of Health Economics 44: 161-175.  Access here
  27. Maaskant, Cornelis.  2015. Risk Sharing within Geographically Spread Extended Families: Evidence from Rural TanzaniaMSc thesis, University of Oxford.
  28. Hirvonen, Kalle and Helene Bie Lilleør. “Going Back Home:  Internal Return Migration in Rural Tanzania.”  World Development 70: 186-202.
  29. De Weerdt, Joachim and Andreas Kutka.  2015. “Urbanisation and Youth Employment in Tanzania.”  ICAS-VI Improving Statistics for Food Security, Sustainable Agriculture, and Rural Development. Linking statistics with decision making, Pages 576 – 586
  30. Kudo, Yuya. 2015. “Female Migration for Marriage: Implications from the Land Reform in Rural Tanzania.” World Development 65: 41-61 Access here
  31. Fujii, Tomoki.2015. “Poverty Decomposition by Regression: An Application to Tanzania.” UNU-WIDER Working Paper 102.
  32. Gaddis, Isis and Johannes Hoogeveen. 2015. “Primary Education in Mainland Tanzania: What Do the Data Tell Us?” in Joshi and Gaddis (eds.) Preparing the Next Generation in Tanzania. Washington, D.C.: The World Bank.
  33. Fichera, Eleonora and David Savage. 2015. “Income and Health in Tanzania. An Instrumental Variable Approach.” World Development 66: 500-515.
  34. Ruiz, Isabel and Carlos Vargas-Silva. 2015. “The Labor Market Impacts of Forced Migration.” The American Economic Review Papers and Proceedings 105(5): 581-586.
  35. Maystadt, Jean-François and Gilles Duranton. “The Development Push of Refugees: Evidence from Tanzania.”, University of Lancaster Economics Working Paper 19.
  36. Corno, Lucia. 2014. “Learning (or not) in Health Seeking Behavior: Evidence from Rural Tanzania.” Economic Development and Cultural Change 63(1):27-72
  37. Maystadt, Jean-François and Philip Verwimp. “Winners and Losers among a Refugee-Hosting Population.” Economic Development and Cultural Change 62(4):769-809.
  38. Scott, Lucy, Katharina Hanifnia, Andrew Shepherd, Milu Muyanga, and Elsa Valli. 2014. “How Resilient are Escapes out of Poverty?” London: Chronic Poverty Advisory Network, Overseas Development Institute.
  39. Scott, Lucy, Debbie Hillier, and Helen Underhill. 2014. “Investigating Resilience Thresholds in Sub-Saharan Africa.” Chronic Poverty Advisory Network and Oxfam.
  40. Hirvonen, Kalle. 2014. “Measuring Catch-up Growth in Malnourished Populations.”Annals of Human Biology 41(1): 67-75.
  41. Rogers, Martha. 2014. Environment and Development: Essays on the Link Between Household Welfare and the Environment in Developing Countries. PhD thesis, The University of Minnesota. download
  42. Batura, Neha. 2013. The Determinants and Impact of Longterm Child Undernutrition: Evidence from Rural Tanzania. Ph.D. thesis, SOAS, University of London. download
  43. Martuscelli, Antonio. 2013. Supply Response and Market Imperfections: The Implications for Welfare Analysis. DPhil thesis, University of Sussex. download
  44. Gachassin, Marie Castaing. 2013. “Should I Stay or Should I Go? The Role of Roads in Migration Decisions.” Journal of African Economies 22(5): 796-826.
  45. BaendeBofota, Youyou. 2013. “The Impact of Social Capital on Children Educational Outcomes: The Case of Tanzania.” IRES Discussion Paper 2013003. download
  46. Peterman, Amber, Shu Wen Ng, Tia Palermo, and I-Heng Emma Lee. 2013. “Managing the Double Burden: Pregnancy and Labor-Intensive Time Use in Rural China, Mexico, and Tanzania.” Studies in Family Planning 44(4): 411-430.
  47. McKay, Andy and EmiliePerge. 2013. “How Strong is the Evidence for the Existence of Poverty Traps? A Multi-country Assessment.” Journal of Development Studies 49(7):877-897.
  48. Bengtsson, N. 2013. “Catholics versus Protestants: On the Benefit Incidence of Faith-Based Foreign Aid.” Economic Development and Cultural Change 61(3):479-50.
  49. Christiaensen, Luc, Joachim De Weerdt, and Todo, Y. 2013. “Urbanization and Poverty Reduction – The Role of Rural Diversification and Secondary Towns.” Agricultural Economics 44:447-459.
  50. Pradhananga, Rosina. 2013. Economic Coping Mechanisms In Response To Household Health Shocks In Kagera, Tanzania: 1991-2004. Master of Public Health Thesis, Yale University.
  51. Kudo, Yuya. 2012. “Returns to Migration: The Role of Educational Attainment in Rural Tanzania.” IDE Discussion Paper 322.
  52. Devicienti, Francesco and Mariacristina Rossi. 2012. “Liquidity Constraints, Uncertain Parental Income and Human Capital Accumulation.” Applied Economics Letters 20(9):826-829.
  53. Peterman, Amber. 2012. “Widowhood and Asset Inheritance in Sub-Saharan Africa: Empirical Evidence from 15 Countries.”Development Policy Review 30 (5): 543-571.
  54. Adhvaryu, Achyuta andAnantNyshadham. 2012. “Schooling, Child Labor, and the Returns to Healthcare in Tanzania. ”The Journal of Human Resources 47(2):364-396.
  55. Adhvaryu, Achyuta and Kathleen Beegle. 2012. “The Impacts of Adult Deaths on Older Household Members in Tanzania.” Economic Development and Cultural Change 60(20): 245-277.
  56. Kirchberger, Martina and FulgenceMishili. 2011. “Agricultural Productivity Growth in Kagera between 1991 and 2004.” IGC Working Paper 11/0897.
  57. Beegle, Kathleen, Joachim De Weerdt, and Stefan Dercon. “Migration and Economic Mobility in Tanzania: Evidence from a Tracking Survey.”Review of Economics and Statistics 93(3): 1010–1033.
  58. Baez, Javier E. 2011. “Civil Wars Beyond their Borders: The Human Capital and Health Consequences of Hosting Refugees.” Journal of Development Economics 96(2):391-408.
  59. Houngbonon, Georges Viven, Sebastian Guendel Rojas, and Viet-Anh Tran. 2011. “The Importance of Tracking in Long-term Household Panel Survey: Evidence from the Impact of Orphanhood on Human Development in Rural Tanzania.” Econometric Team Work from Paris School of Economics, Master in Public Policies and Development. download
  60. Opuni, Marjorie, Amber Peterman, and David Bishai. 2011. “Inequality in Prime-age Adult Deaths in a High AIDS Mortality Setting: Does the Measure of Economic Status Matter?” Health Economics 20(11): 1298-1311.
  61. Peterman, Amber. 2011. “Women’s Property Rights and Gendered Policies: Implications for Women’s Long-term Welfare in Rural Tanzania.” Journal of Development Studies 47(1):1-30.
  62. Beegle, Kathleen, Joachim De Weerdt and Stefan Dercon. “Patterns of Migration in Tanzania.” in Larrison, Murrugarra and Sasin (eds.) Migration and Poverty: Towards Better Migration Opportunities For the Poor. Washington DC: The World Bank.
  63. Bengtsson, Niklas. 2010. “How Responsive is Body Weight to Transitory Income Changes? Evidence from Rural Tanzania.” Journal of Development Economics 92 (1): 53-61.
  64. Maystadt, Jean-François. 2010. Conflict and Forced Migration. PhD thesis, Université Catholique de Louvain. download
  65. Hagen, Jens, TomanOmar Mahmoud, and Natalia Trofimenko. 2010. “Orphanhood and Critical Periods in Children’s Human Capital Formation: Long-Run Evidence from North-Western Tanzania.” Kiel Working Paper 1649. download
  66. De Weerdt, Joachim. 2010. “Moving out of Poverty in Tanzania: Evidence from Kagera.” Journal of Development Studies 46(2): 331-349.
  67. Beegle, Kathleen, Joachim De Weerdt and Stefan Dercon. “Orphanhood and Human Capital Destruction: Is there Persistence into Adulthood?” Demography 47(1): 163-180.
  68. Dimova, Ralitzaand Kunal Sen. 2010. “Is household income diversification a means of survival or a means of accumulation? Panel data evidence from Tanzania.” SSRN
  69. Ikegami, Munenobu. 2009. “Agricultural Productivity and Mortality: Evidence from Kagera, Tanzania.” download
  70. Peterman, Amber. 2009. Essays in Maternal Health and Human Rights: Evidence from Sub-Saharan Africa. PhD thesis, University of North Carolina at Chapel Hill.
  71. Beegle, Kathleen, Joachim De Weerdt, and Stefan Dercon. “The Intergenerational Impact of the African Orphans Crisis: A Cohort Study from an HIV/AIDS Affected Area.”International Journal of Epidemiology 38(2):561-568.
  72. Troerup, Sara and O. Mertz. 2009. “Linking Climate Trends to Coping Strategies in Northern Tanzania.” IOP Conference Series: Earth and Environmental Science 6. download
  73. Berger, Sarah. 2008. Understanding Disease Progression in the Kagera Region of Tanzania: A framework for efficient health care delivery. MA thesis, Georgetown Public Policy Institute. download
  74. Litchfield,Julie and Thomas McGregor. 2008. “Poverty in Kagera, Tanzania: Characteristics, Causes and Constraints.”Poverty Research Unit at Sussex Working Paper 42.
  75. Lilleør, Helene Bie. 2008. “Human Capital Diversification Within the Household. Findings from Tanzania.” University of Copenhagen Centre for Applied Microeconometrics Working Paper 2008-04. download
  76. Beegle, Kathleen, Rajeev Dehejia, Roberta Gatti. and Sofya Krutikova. 2008. “The Consequences of Child Labor: Evidence from Longitudinal Data Rural Tanzania.” World Bank Policy Research Working Paper 4677.
  77. Alderman, Harold, Johannes Hoogeveen, and Mariacristina Rossi. 2008. “Preschool Nutrition and Subsequent Schooling Attainment: Longitudinal Evidence from Tanzania.” Economic Development and Cultural Change  57(2):239-260.
  78. Dercon, Stefan. 2008. “Fate and Fear: Risk and its Consequences in Africa.” Journal of African Economies 17(2):97-127.
  79. Lassen, D. and Helene Bie Lilleor. “Informal Institutions and Intergenerational Contracts: Evidence from Schooling and Remittances in Rural Tanzania.” mimeo, University of Copenhagen. download
  80. Beegle, Kathleen and Sofya Krutikova. 2008. “Adult Mortality and Children’s Transition into Marriage.” Demographic Research 19(42): 1551-1574. download
  81. Anselmi, Laura. 2007. Social Learning in Health Behaviour: The Case of Mosquito Bed Nets in Tanzania. PhD thesis, Oxford University. download.
  82. Simonsen, Marianne and Lars Skipper. 2007. “Child Health in a Developing Country: Consequences for Short- and Medium Term Outcomes.” mimeo, University of Arhus and Institute for Local Government Studies. download
  83. Udry, Christopher and Hyungi Woo. 2007.“Households and the Social Organization of Consumption in Southern Ghana.”African Studies Review 50(2): 139-53.
  84. Baez, Javier E. 2007. “Do Local Children Suffer from Foreign Refugees Inflows? Evidence from Host Communities in Northwestern Tanzania.” SSRN.
  85. Beegle, Kathleen, Joachim De Weerdt, and Stefan Dercon. “Adult Mortality and Economic Growth in the Age of HIV/AIDS.” Economic Development and Cultural Change 56 (2): 299-326.
  86. Ksoll, Christopher. 2007. “Family Networks and Orphan Caretaking in Tanzania.” Oxford University Department of Economics Working Paper
  87. Udry, Christopher and Hyungi Woo. 2007. “Households and the Social Organization of Consumption in Southern Ghana.” African Studies Review 50(2): 139-53.
  88. Roberts, Peter, KC Shyam, and Cordula Rastogi. 2006. “Rural Access Index: A Key Development Indicator.” World Bank Transport Paper 10. download
  89. Beegle, Kathleen, Joachim De Weerdt and Stefan Dercon. “Orphanhood and the Long-term Impact on Children.” American Journal of Agricultural Economics 88(5): 1266-1277.
  90. Beegle, Kathleen, Rajeev Dehejia, and Roberta Gatti. 2006. “Child Labor and Agricultural Shocks.” Journal of Development Economics 81(1): 80-96.
  91. Alderman, Harold, Johannes Hoogeveen and M. Rossi. 2006. “Reducing Child Malnutrition in Tanzania: Combined Effects of Income Growth and Program Interventions.” Economics and Human Biology 4: 1-23.
  92. Sahn, David E. and Stephen D. Younger. 2006. “Testing the Kuznets Curve for Countries and Households Using the Body Mass Index.” Strategies and Analysis for Growth and Access Working Paper September 2006.
  93. Krutikov, Sonya. 2006. “Impact of Child Labour on Educational Attainment in Adulthood: Evidence from Rural Tanzania.” mimeo, Oxford University. download
  94. Seebens, Holger. 2006. “The Contribution of Female non-farm Income to Poverty Reduction.” Paper prepared for the Tanzania Gender and Growth Assessment.
  95. Suliman, EldawAbdalla. 2005. Orphanhood, Fostering, and Child Well-being in Tanzania. PhD thesis, The Johns Hopkins University.
  96. Beegle, Kathleen. 2005. “Labor Effects of Adult Mortality in Tanzanian Households.” Economic Development and Cultural Change 53(3): 655-684.
  97. Ainsworth, Martha, Kathleen Beegle, and GodlikeKoda. 2005. “The Impact of Adult Mortality and Parental Deaths on Primary Schooling in Northwestern Tanzania.”Journal of Development Studies 41(3): 412 – 439.
  98. Seck, Papa. 2005. “Do Parents Favor their Biological Offspring over Adopted Orphans? Theory and Evidence from Tanzania.” Hunter College Department of Economics Working Paper
  99. Burke, Kathleen and Kathleen Beegle. “Why Children Aren’t Attending School: The Case of Northwestern Tanzania.”Journal of African Economies 13(2): 333-355.
  100. Lundberg, Mattias, Mead Over, and PhareMujinja. 2003. “Do Savings Predict Death? Precautionary Savings During an Epidemic.” manuscript prepared for UNAIDS, Geneva. download
  101. Ainsworth, Martha and Julia Dayton. 2003. “The Impact of the AIDS Epidemic on the Health of the Elderly in Tanzania.”World Development 31(1): 131-148.
  102. Lundberg, Mattias, Mead Over, and PhareMujinja. 2003. “Transfers and Household Welfare in Kagera, Tanzania.” Prepared for UNAIDS.
  103. Dayton, Julia and Martha Ainsworth. 2002. “The Elderly and AIDS: Coping Strategies and Health Consequences in Rural Tanzania.” Social Science and Medicine 59: 2161-2172.
  104. Lundberg, Mattias, Mead Over, and Phare Mujinja. 2000. “Sources of Financial Assistance for Households Suffering an Adult Death in Kagera, Tanzania.” South African Journal of Economics 68:5:947-984.
  105. Ainsworth, Martha and Innocent Semali. 2000. “The Impact of Adult Deaths on Child Health in Northwestern Tanzania.” World Bank Policy Research Working Paper
  106. Ainsworth, Martha and Innnocent Semali. 1998. “Who dies from AIDS? Socioeconomic Correlates of Adult Deaths in Kagera Region, Tanzania” background paper for Ainsworth, Fransen, and Over (eds.) Confronting AIDS: Public Priorities in a Global Epidemic.
  107. Ainsworth, Martha, Deon Filmer and InnocentSemali. 1998. “The Impact of AIDS Mortality on Individual Fertility: Evidence from Tanzania.” in Montgomery and Cohen (eds.) From Death to Birth: Mortality Decline and Reproductive Change. Washington, DC: National Academy Press.
  108. Ainsworth, Martha and Mead Over. 1997. Confronting AIDS: Public Priorities in a Global Epidemic. Washington, D.C.: Oxford University Press. download
  109. Semali, Innocent and Martha Ainsworth. 1995. “A Profile of Traditional Healers in an Area Hard-hit by the AIDS Epidemic: Kagera Region, Tanzania.” download
  110. Ainsworth, Martha, Susmita Ghosh, and Innocent Semali. 1995. “The Impact of Adult Deaths on Household Composition in Kagera Region, Tanzania.”
  111. Ainsworth, Martha and Godlike Koda. 1993. “The Impact of Adult Deaths on School Enrollments and Attendance in Northwestern Tanzania.”
  112. Ainsworth, Martha, Godlike Koda, George Lwihula, Phare Mujinja, Mead Over and Innocent Semali. 1992. “Measuring the Economic Impact of Fatal Adult Illness in Sub-Saharan Africa: An Annotated Household Questionnaire.”World Bank Living Standards Measurement Study Working Paper download

KHDS: An Introduction

 

The Kagera Health and Development Survey (KHDS) is a study into the long-run wealth dynamics of households and individuals within North West Tanzania. This study entails the resurvey of a panel of households, originally interviewed for 4 rounds from 1991 to 1994. Resurveys were then organised in 2004 and 2010. A multi-topic household questionnaire is administered to all split-off households originating from the baseline households, including those that have moved out of the baseline location.

This constitutes one of the longest-running (if not the longest) African panel data set of this nature and offers an unprecedented set of research opportunities for examining long-run (nearly 20 years) and intergenerational (as the children of the original respondents have now formed their own households) trends in and mechanisms of poverty persistence and economic growth in rural households. Interviewing people who moved out of their baseline location is important for understanding how migration and economic development interlink. Finally, of note to survey innovation, the 2010 round of the survey was conducted using electronic survey questionnaires administered on handheld computers. Caeyers et al. (2010) do a detailed, formal comparison of electronic versus paper-based data collection methods, through a randomized survey experiment.

KHDS has maintained a highly successful tracking rate. The table below shows that in 2010 88% of the original 6353 respondents had either been located and interviewed, or, if deceased, sufficient information regarding the circumstances of their death collected.

Table: Status of the 6353 original respondents

2004
2010
interviewed 4430 (70%) 4336 (68%)
deceased 961 (15%) 1275 (20%)
untraced 962 (15%) 742 (12%)
TOTAL 6353 (100%) 6353 (100%)

The KHDS 2010 was primarily funded by the Rockwool Foundation and the World Bank, with additional funds provided by the Hewlett Foundation through the Agence Inter-établissements de Recherche pour le Développement (AIRD). The 2004 round was funded by the Knowledge for Change Partnership Trust Fund at the World Bank and DANIDAThe baseline 1991-1994 KHDS was funded by the World Bank Research Committee.

 


KHDS Data and instruments

The full 13-year panel data set, the questionnaires and a basic information document for data users are now publicly available.

Go to the 1991-94 data download site

Go to the 2004 data download site

Go to the 2010 data download site

Data users, using the questionnaires to link up with the downloaded data sets, are advised to download the questionnaires directly from the above mentioned websites rather than from the links below (Scroll down).

At the start of KHDS details of all respondents listed on the KHDS-1 roster in 1991/94 were recorded on a Household Tracking Form. For each member that was not living in the original village or in the immediate vicinity of it an Individual Tracking Form was filled in containing detailed information on how to reach the individual. Very often the interviewers were instructed to speak to other informants. In case this informant him or herself lived far away, an Informant Tracking Form was filled to reach him or her.

The main KHDS instrument was an elaborate Household Questionnaire. Two cards were inserted in the questionnaire. Each of these cards lines up with the rows in certain sections. The Household Roster shows the name, sex, age and ID number of each current household member. When a KHDS1 respondent is currently found to be living apart from other members his/her 1991/94 household, then these people are recorded on the Network Roster. Except for these split-off household members this roster also includes children previously recorded as living elsewhere. The network roster allows for the collection of linked relational data on the extended family.

Anthropometric measurements of all current household members were taken (even if they were not KHDS-1 respondents). These measurements were recorded on the Anthropometric Questionnaire. For all KHDS-1 respondents who died between 1991/94 and 2004 information on the circumstances of their death was collected in a Mortality Questionnaire.

Price data was collected at local markets and recorded in the Price Questionnaire. For each KHDS-1 cluster a Community Questionnaire was administered to a group of key informants, as well as a School Questionnaire in the primary school(s) in the community.

 


KHDS Fieldwork

KHDS collects longitudinal data by revisiting respondents interviewed nearly 20 years ago. It is one of the few household surveys that has data over such a long period and that can address questions concerning long-term effects of childhood circumstances. It provides a unique opportunity to assess who stayed in poverty over this period and why; who moved out of poverty and how.

The sampling strategy in KHDS 2004 and KHDS 2010 was to re-interview all individuals who were household members in any wave of the KHDS 91-94, a total of 6,355 people. The Household Questionnaire was administered in the household in which these Previous Household Members (PHHMs) lived. For all household members alive during the last interview in 1991-1994, but found to be deceased by the time of the fieldwork in 2004 and 2010, information about the deceased would be collected in the Mortality Questionnaire. The next sections provide statistics of the KHDS 2004 and 2010 households.

KHDS 2004
Although the KHDS is a panel of individuals and the concept of a household after 10-19 years is a vague notion, it is common in panel surveys to consider re-contact rates in terms of households. Table 1 shows the rate of re-contact of the baseline households in KHDS 2004, where a re-contact is defined as having interviewed at least one person from the household.

Excluding households in which all previous members are deceased (17 households and 27 respondents), the KHDS 2004 field team managed to re-contact 93 percent of the baseline households. Not all 915 households received four interviews. Unsurprisingly, households that were in the baseline survey for all four waves had the highest probability of being re-interviewed. Of these 746 households, 96 percent were re-interviewed.

Turning to re-contact rates of the sample of 6,353 respondents, Table 2 shows the status of the respondents by age group (based on their age at first interview in the 1991-1994 waves). Re-interview rates are monotonically decreasing with age, although the reasons (deceased or not located) vary by age group. The older respondents were much more likely to be located if alive. Among the youngest respondents, over three-quarter were successfully re-interviewed. Excluding people who died, 82 percent of all respondents were re-interviewed.

Table 1: KHDS 2004 and 2010 Households

KHDS 91-94 KHDS 2004 Re-interview Rates KHDS 2010 Re-interview Rates  
Number of interviews during 1991-1994 Re-interviewed Deceased Untraced Re-interviewed Deceased Untraced Total
1 22 4 15 22 4 15 41
  54 % 10 % 37 % 54 % 10 % 37 %  
2 38 2 6 36 2 8 46
  83 % 4 % 13 % 78 % 4 % 17 %  
3 59 1 9 54 2 13 69
  86 % 1 % 13 % 78 % 3 % 19 %  
4 713 13 33 706 18 35 759
  94 % 2 % 4 % 93 % 2 % 5 %  
Overall 832 20 63 818 26 71 915
  91 % 2 % 7 % 89 % 3 % 8 %  
Notes: “Re-interviewed” means that at least one member of the baseline household was re-interviewed. “Deceased” means that all Previous Household Members are reported to be dead. “Untraced” means that no Previous Household Member was re-interviewed.

   

Table 2: KHDS 2004 and 2010 Individuals by Age

  KHDS 2004 KHDS 2010
Age at baseline 1991-1994 Re-interviewed Deceased Untraced Re-interview rate among survivors Re-interviewed Deceased Untraced Re-interview rate among survivors
<10 years 1424 150 278 84% 1403 173 276 84%
  77% 8% 15%   76% 9% 15%  
10-19 years 1453 99 431 77% 1523 176 284 84%
  73% 5% 22%   77% 9% 14%  
20-39 years 913 291 205 82% 891 369 149 86%
  65% 21% 15%   63% 26% 11%  
40-59 years 448 146 38 92% 397 205 30 93%
  71% 23% 6%   63% 32% 5%  
60+ years 192 275 10 95% 122 352 3 98%
40% 58% 2%   26% 74% 1%  
Overall 4430 961 962 82% 4336 1275 742 85%
70% 15% 15% 68% 20% 12%
Notes: Sample of individuals interviewed in KHDS 91-94. Age categories are based on age at first interview. “Re-interviewed” means that the person was found and was re-interviewed. “Untraced” means that the person was not found or refused to be re-interviewed.

KHDS 2010
The re-contact rates in the KHDS 2010 are in line with the ones achieved in KHDS 2004. Table 1 shows the KHDS 2010 re-contacting rates in terms of the baseline households. Excluding the households in which all PHHMs were deceased, 92 percent of the households were re-contacted.

As in KHDS 2004, households that were interviewed four times at the baseline were more likely found in 2010. Excluding the households in which all members had died, 95 percent of these households were re-interviewed in 2010.

The KHDS 2010 re-contact rates in terms of panel respondents are provided in Table 2. As in 2004, the older respondents, if alive, were much more likely to be re-contacted than younger respondents. In the oldest age category, 60 years and old at the baseline, the interview teams managed to re-contact almost 98 percent of all survivors. The length of the KHDS survey starts to be seen in this age category however, as almost three quarters of the respondents had passed away by 2010.

Table 3 provides the KHDS 2010 re-contact rates by location. More than 50 percent of the re-interviewed panel respondents were located in the same community as in KHDS 91-94. Nearly 14 percent of the re-contacted respondents were found from other region than Kagera. The survey team also tracked panel respondents in Uganda where one percent of the interviewed panel respondents were located.

The location of the untraced respondents is based on the tracking data. More than half of the untraced respondents are reported to be living in Kagera.

Table 3: KHDS 2010 Re-Contact Rates by Location

Number Location %
Baseline sample 6,353
Re-interviewed 4,336
Same community 52
Nearby village 9
Elsewhere in Kagera 24
Other region 14
Uganda (a) 1
Untraced 742
Kagera 53
Dar es Salaam 9
Mwanza 9
Other region 10
Other country (b) 8
Not known 11
Deceased 1,275
Notes: Location for untraced respondents is reported by other household members from the baseline survey who were successfully located, interviewed, and able to provide location information on the respondent. In some cases, this information comes from other relatives or neighbours residing in the baseline communities.
a. KHDS 2010 tracked international migrants in Uganda only.
b. Countries to which the 58 untraced respondents had moved are: Burundi, Denmark, Kenya, Norway, Rwanda, South-Africa, Sweden, UK and USA.

Location of households in 2004

KHDS flowchart tracking

Note to the figure above: “Traced” means that there was adequate address information for at least one surviving household member during the initial field visits in October – November 2004. Subsequent field work from January – May 2004 yielded additional information, which increased the number of traced households, and this is not reflected in the statistics presented here

 

KHDS TEAM

Team of Core Researchers on KHDS 2004
Kathleen Beegle (World Bank)
Joachim De Weerdt (EDI)
Stefan Dercon (University of Oxford)
Flora Kessy (ESRF)
Godlike Koda (UDSM)
Gideon Kwesigabo (UDSM)
Phare Mujinja (MUCHS)
Innocent Semali (MUCHS)
Data Entry Programme written by: Bjorn Van Campenhout
Team of Core Researchers on KHDS 2010
Kathleen Beegle (World Bank)
Helene Bie Lilleør (Rockwool Foundation)
Joachim De Weerdt (EDI)
Stefan Dercon (University of Oxford)
Sonya Krutikov (University of Oxford)
Gideon Kwesigabo (MUHAS)
Phare Mujinja (MUHAS)
Vera Ngowi (MUHAS)
Electronic Survey (CAPI) Application written by: Neil Chalmers
Fieldwork 2004 coordinated by:
Joachim De Weerdt
Mujobu Moyo
Data Entry 2004:
Chris Ksoll
Samuel Muganyizi
Enid Ernest
Ally Yusuph
James Kamala
George Karugendo
Fredrick Ododa
Malicky Hamidu
Fieldwork 2004 Supervised by:
Privatus Kalugendo
Henry Lugakingira
Respichius Mitti
Yvonne Swai
2004 Interviewing Team:
Benjamin Kamukulu
Benjamin Michael
George Musikula
Anderson Mutasingwa
Adestuta Rugaibula
Habibu Ismail Rutta
Jason Kabulemu
Sibomana Leonard
Khalid Helibariki
David Mugizi
Alieth Mutungi
Irene Ng’wananogu
Johansen Joel
Spridion Njunwa
Leonard Kyaruzi
Simon Bikaru
George Baisi
Matovu Davis
Aissa Issa
Hamida Issa Selemani
Edwin Bigirwamungu
Deogratias Kamugisha
Hamza Issa
Adelaida Josephat
Wilson Kabito
Stephen Kagaruki
Paternus Patrick
Fieldwork 2010 coordinated by:
Joachim De Weerdt
Respichius Mitti
Leonard Kyaruzi
In-field survey technical support:
Kalle Hirvonen
Data Processing 2010:
Thaddaeus Rweyemamu
Timothy Kyesy
Godian Rutibi
Alexander Katura
Fieldwork 2010 supervised by:
George J. Musikula
Bernard M. Matungwa
Allan Katemana
Mwenge Godlaid
2010 Interviewing Team:
Aisa Issa
Wilson Kabito
George Gabriel
Justiner Katoke
Adella T. Kamugisha
Faustine Misinde
Robert Kamugisha
Makarios Kiyonga
Pius S. Alibaliwo
Hildephonce H. Mulashani
Bernard Primus
Deogratius Kagaruki
Joseph G. Manana
Michael Kwanga
Priscar Roman
Martin Kagaruki
Mujuni Muganyizi
Emmanuel Deodath
Groly Masinde
Afisa Ramadhani
Englibetus N. Alphonce
Revocatus Kamugisha
Godfrey L. Benedicto
Fadhili Lugumila
Kimbugwe J. Francis
Penina Pius Antony
Gisela Tibaijuka
David C. Rutta
Isaack Ahmed
Ian Almachius
Liberatus Kassim

 


KHDS Data Downloads

More information on the surveys can be found in their Basic Information Documents:

1991-94 Basic Information Document

2004 Basic Information Document

2010 Basic Information Document

This document compares the KHDS sample to the HBS (see Basic Information Document for a comparison with CWIQ):  KHDS-HBS comparison.

Researchers using the data may benefit from the following additional constructed data sets:

KHDS 2010 distance to borders, border crossings, refugee camps and original location and linked HHs (from Jose Funes and Jean-Francois Maystadt)

KHDS 2010 matrix of distances between all interviewed HHs in 2010 note this is an 80MB file (from Jose Funes and Jean-Francois Maystadt)

Price, Consumption and Assets Aggregates (1991-2004) – updated in 2004 (do not use with 2010 round)

Price and Consumption Aggregates (1991-2010) – updated in 2010 (for use with 2010 round)

Rainfall data 1980-2004

GPS data 2004: distance to schools, community centers, baseline HH, other HHs in village and distance between villages

GPS data 2004: distance of KHDS communities to Rwanda border (from Javier Baez)

GPS data 2004: distance of KHDS communities to Rwanda, Burundi and Uganda borders (from Monica Fisher)

GPS data 2004: distance of KHDS communities to refugee camps (from Jean-Francois Maystadt)

GPS data 2004: elevation data for all markets, schools, community centers and households in KHDS

NASA weather data (from Kalle Hirvonen)

this is daily data spanning 1981-2010 on all baseline villages on these variables:

•  Atmospheric Pressure (kPa)

•  Minimum Air Temperature At 2 m Above The Surface Of The Earth (degrees C)

•  Maximum Air Temperature At 2 m Above The Surface Of The Earth (degrees C)

•  Humidity Ratio At 2 m Above The Surface Of The Earth (%)

•  Relative Humidity (%)

•  Dew/Frost Point Temperature (degrees C)

•  Earth Skin Temperature (degrees C)

•  Wind Speed At 10 m Above The Surface Of The Earth (m/s)

•  Precipitation (mm/day)

•  Air Temperature At 2 m Above The Surface Of The Earth (degrees C)

Those last two variables are also available for the migration destinations

If the data you are looking for is not in this list, then try here: http://openmicrodata.wordpress.com/

CWIQ currently constitutes one of the largest socio-economic household survey databases on Tanzania. Since 2003 EDI has interviewed roughly 20,000 households in 35 different districts. For 9 districts repeat surveys have been organised to track changes over time.

RATIONALE: Absence of district level survey data does not rhyme with the devolution of power to districts. Tanzania is undergoing a decentralisation process whereby each of its roughly 128 districts is becoming an increasingly important policy actor. A district taking on this challenge needs accurate information to monitor and develop its own policies. Much relevant information is currently not available as national statistics are not representative at district level and many of the routine data collection mechanisms are still under development. CWIQ then provides an attractive, one-stop survey-based method to collect basic development indicators. Furthermore, the survey results can be disseminated – through Swahili briefs and posters – to a district’s population; thus increasing the extent to which people are able to hold their local governments accountable. Exciting new ground is being broken on such population-wide dissemination by the Prime Minister’s Office.

METHODOLOGY: The data are collected through a small 10-page questionnaire (downloadable below), called the Core Welfare Indicators Questionnaire (CWIQ). The questionnaire and data software constitute an off-the-shelf survey package developed by the World Bank to produce standardised monitoring indicators of welfare. The questionnaire is purposively concise and is designed to collect information on household demographics, employment, education, health and nutrition as well as utilisation and satisfaction with social services. Questionnaires are scannable, with interviewers shading bubbles and writing numbers later recognised by the scanning software. The data system is fully automated allowing the results to roll out within weeks of the fieldwork.

FUNDING: projects are typically funded by organisations that care about making decentralisation work in Tanzania. CWIQ is a method to promote evidence-based policy formulation and debate in the district and a tool for the population to hold their local governments accountable. With funding from the RNE (Royal Netherlands Embassy) and SNV (Stichting Nederlands Vrijwilligers), CWIQ surveys were implemented between 2003-2005 in 16 districts. In 2006/07 PMO-RALG (Prime Minister’s Office – Regional Administration and Local Government) commissioned EDI to cover a further 28 districts. In 9 of these districts this constituted a repeat survey and thus a unique opportunity arises to monitor changes that occurred in the district over this time period.

DISSEMINATION: EDI disseminated the results of CWIQ on posters and briefs to district level stakeholders (councillors, district officials, NGOs, CBOs, Advocacy Groups, MPs, ‘interested citizens’, etc.), with the aim at district level, to: (i) promote evidence-based policy debate, (ii) promote evidence-based policy formulation, (iii) provide tools for district level M&E and (iv) increase accountability of LGA to citizens.

PUBLIC DOMAIN: Currently in the public domain are (i) all CWIQ reports – note that Shinyanga 2004 and Kagera 2003 reports are organised into one region-wide report (ii) Swahili and English briefs for 5 pilot dissemination districts funded by the Prime Minister’s Office – and (iii) raw data for all CWIQs conducted between 2003 and 2007.

 

LGA
REGION

FULL REPORT

BRIEFS

RAW DATA IN PUBLIC DOMAIN?
COMMISSIONED BY
Bariadi DC Shinyanga 2004 & 2006 YES RNE & PMO-RALG
Biharamulo DC Kagera 2003 YES RNE
Bukoba DC Kagera 2003 & 2006 YES, BOTH YEARS RNE & PMO-RALG
Bukombe DC Shinyanga 2004 & 2006 YES, BOTH YEARS RNE & PMO-RALG
Bunda DC Mara 2006 YES PMO-RALG
Chamwino DC Dodoma 2007 YES PMO-RALG
Dodoma MC Dodoma 2007 YES PMO-RALG
Hanang DC Manyara 2006 YES PMO-RALG
Kahama DC Shinyanga 2004 & 2006 YES, BOTH YEARS RNE & PMO-RALG
Karagwe DC Kagera 2003 & 2006 YES, BOTH YEARS RNE & PMO-RALG
Karatu DC Aursha 2005 YES SNV
Kasulu DC Kigoma 2006 YES PMO-RALG
Kibondo DC Kigoma 2006 YES PMO-RALG
Kigoma DC Kigoma 2006 YES PMO-RALG
Kilosa DC Morogoro 2007 YES PMO-RALG
Kishapu DC Shinyanga 2004 & 2007 YES, BOTH YEARS RNE & PMO-RALG
Kondoa DC Dodoma 2005 YES SNV
Korogwe DC Dodoma 2007 YES PMO-RALG
Maswa DC Shinyanga 2004 & 2007 YES, BOTH YEARS RNE & PMO-RALG
Mbulu DC Manyara 2005 YES SNV
Monduli DC Arusha 2005 YES SNV
Meatu DC Shinyanga 2004 & 2007 YES, BOTH YEARS RNE & PMO-RALG
Morogoro DC Morogoro 2007 YES PMO-RALG
Mpwapwa DC Dodoma 2007 YES PMO-RALG
Muheza DC Tanga 2007 YES PMO-RALG
Muleba DC Kagera 2003 YES RNE
Musoma DC Mara 2006 YES PMO-RALG
Ngara DC Kagera 2003 & 2006 YES, BOTH YEARS RNE & PMO-RALG
Ngorongoro DC Arusha 2006 YES PMO-RALG
Rufiji DC Pwani 2007 YES PMO-RALG
Shinyanga DC Shinyanga 2004 YES RNE
Shinyanga MC Shinyanga 2006 YES PMO-RALG
Singida DC Singida 2007 YES PMO-RALG
Tanga MC Tanga 2007 YES PMO-RALG
Temeke MC Dar 2007 YES PMO-RALG

 

DC: District Council (i.e. rural areas)

MC: Municipal Council (i.e. urban areas)

PMO-RALG: Prime Minister’s Office – Regional Administration and Local Government

RNE: Royal Netherlands Embassy

SNV: Stichting Nederlands Vrijwilligers


Download Comparative Report

A Comparative Report comparing results of 16 CWIQ surveys in Shinyanga, Kagera and the Northern Highlands

Download Raw Data Sets

Kagera 2003 data (5 districts)

Shinyanga 2004 data (7 districts)

SNV 2005 data (4 districts)

PMO-RALG 2006/07 data (28 districts). Download also the 2006/07 CWIQ Questionnaire (in Swahili) and the 2006/07 Data Dictionary (doubles as translation for questionniare).

For data documentation please refer to the manuals.

Please drop me an e-mail at j.deweerdt@edi-africa.com to say for what purpose you are using these data and keep me informed of analysis based on them.

SHWALITA – probably the most exotic name that has ever been conjured up for an EDI research project – is short for ‘Survey of Household Welfare and Labour in Tanzania’. It is a unique experiment in survey design that Joachim De Weerdt and the team at EDI conducted on behalf of the University of Dar es Salaam and the World Bank. The project was developed by the Living Standards Measurement Study (LSMS) Team in the World Bank in collaboration with the University of Dar es Salaam and EDI. The survey experiment is an important component of the LSMS’ multi-year research agenda in survey methodology (LSMS Phase IV).

The consumption experiments in the survey benefited from substantial inputs from John Gibson at the Waikato Management School, Adolf Mkenda at the University of Dar es Salaam, Jed Friedman and Peter Lanjouw from the World Bank; the labor experiments from the inputs of Elena Bardasi from the World Bank and Andrew Dillon from IFPRI; and the subjective welfare experiment from inputs by and Adelbertus Kamanzi from Uganda Martyrs’ University. Kathleen Beegle of the LSMS team is task manager of the project. Other members of the LSMS team include Kinnon Scott, Calogero Carletto, Diane Steele and Kristen Himelein.

This 4,000 household survey randomly assigns 8 slightly different survey modules to its respondents. The survey modules reproduce 8 different ways in which research projects across the globe have aimed at measuring households’ welfare. In addition, the instruments aim at validating the way labour allocation and subjective welfare can be measured. By randomly assigning households to certain modules, the goal is to highlight differences in outcomes that are purely related to the research design, but do not reflect ‘real’ differences.

This survey consists of 3 separate experiments, carefully bundled into one survey: (i) consumption experiments (ii) labour module experiments (iii) subjective welfare experiments, conducted electronically on CWEST, which was EDI’s precursor software to Surveybe.

On this page you will first find publications made on this dataset and then some more detailed explanations of each of SHWALITA’s components, its sample and cluster locations.

Rationale

The rationale behind the CONSUMPTION EXPERIMENTS comes from the observation that there are large and growing gaps between micro and macro estimates of household consumption. These discrepancies have profound implications for measuring global progress in poverty reduction and the effect of economic growth on that process. Currently it is difficult to reconcile these differences due to the wide variation in methods used to measure household consumption. While macro measures are broadly consistent around the world, under the SNA framework, micro measures of household consumption have no such standardization. Household expenditure surveys vary widely across many dimensions, including: the method of data capture (diary versus recall), the level of respondent (individual versus household), the length of the reference period for which consumption is reported (varying from 3 days, to one week, to one year) and the degree of commodity detail in recall surveys (varying from less than 20 to over 400 items). These variations occur both across countries and also over time as statistical offices alter survey design, with little understanding of the implications of such changes for spatially and temporally consistent measurement of household consumption and poverty. This variation hampers both cross-country studies of poverty and well-being measures as well as measuring poverty trends within country. This experiment implements alternative methods to measure household consumption.

The researchers developed eight alternative consumption questionnaires which were randomly distributed across 4,000 households. These eight designs vary by method (3 diaries and 5 recall modules), length of reference period in recall modules, and the number of items in the recall modules. In addition to assessing how the alternative methods affect consumption calculations and household rankings, the evaluation will include a comparison of costs across numerous dimensions: length of field work (in part based on length of interview which will be recorded), coding and data entry inter alia. The study also assesses the sensitivity (robustness) of poverty line calculations where the food poverty is based on calorie assignment of food groups in turn affected by level of disaggregation of food items.

The LABOUR EXPERIMENTS assess the effect of different ways of collecting labour statistics. It uses two different modules, a long module and a short module, and administers each to either the person him/herself or to someone else in the household answering on their behalf (a proxy respondent). Both proxy respondents and self-reporting respondents are sampled randomly from the roster of household members.

The SUBJECTIVE WELFARE EXPERIMENTS use an innovative approach to enhance comparability of subjective welfare questions. The technique, developed in political sciences by Gary King, involves the respondent to provide scaled answers on qualitative questions (on a scale of 1 to 5, how do you feel about….). In order to ‘anchor’ the response the respondent is given a ‘vignette’ a short, but powerful story about a fictitious person and is then asked to place this person on the same scale. The placing of the vignette on the same scale allows answers to become more comparable across households, communities and countries. Data were captured electronically through CWEST.

 

Sampling & Module Assignment

The 7 districts covered in this project were previously surveyed through EDI’s CWIQ project (see tab at the top of this page for more detail), in which a sample of households was drawn to be representative at district level. Data from the 2002 Census was used to put together a list of all villages in the district. In the first stage of the sampling process villages were chosen proportional to their population size. In a second stage the sub-village (kitongoji) was chosen within the village through simple random sampling. In the selected sub-village, or cluster all households were listed. Shwalita makes use of CWIQ’s sampling frame to randomly select 24 clusters out of the 30 CWIQ clusters and draw its random sample of households from the CWIQ listing forms. The following table shows the selected districts and is sorted in the order in which they will be visited.

 

District region urban/rural adult literacy rate according to CWIQ Available CWIQ documents
Bukoba Rural Kagera
rural
81%
reportbrief ENGbrief SWA
Karagwe Kagera
rural
67%
reportbrief ENGbrief SWA
Bukombe Shinyanga
rural
62%
reportbrief ENGbrief SWA
Bariadi Shinyanga
rural
54%
report
Rufiji Pwani
rural
61%
reportbrief ENGbrief SWA
Temeke Dar es Salaam
urban
90%
reportbrief ENGbrief SWA
Dodoma Urban Dodoma
urban
75%
report

 

The following 8 modules are randomly assigned to 3 households within each cluster:

Consumption Recall and Labour Modules:

module No. type of labour module recall length in consumption module type of item list in consumption module total sample size(24 clusters in each of 7 districts) downloads questionnaires
1 short labour module with reporting by proxy respondent

14 days

long item list 504 obs.(1/3 without labour module) ENGLISHSWAHILI
2 short labour module with members self-reporting

7 days

long item list 504 obs.(1/3 without labour module) ENGLISHSWAHILI
3 long labour module with reporting by proxy respondent

7 days

short subset of long list 504 obs.(1/3 without labour module) ENGLISHSWAHILI
4 long labour module with members self-reporting 7 days short collapsed list (aggregation of items from long list) 504 obs.(1/3 without labour module) ENGLISHSWAHILI
5 NONE 1 month

long item list504 obs.ENGLISHSWAHILI

 

Diaries:

Module No. level at which administered diary period frequency of visits by interviewer frequency of visits by locally recruited assistant total sample size(24 clusters in each of 7 districts) downloads
6 individual 14 days frequent visits:all individuals on days 1-3-5-8-10-12-15 every day 504 ENGLISHSWAHILI
7 household 14 days frequent visits:all households on days 1-3-5-8-10-12-15 every day 504 ENGLISHSWAHILI
8 household 14 days infrequent visits:Literate households: days 1-8-15.Illiterate households days 1-3-5-8-10-12-15 no visits 504 ENGLISHSWAHILI

Download diary household questionnaire (administered during first and last vist): ENGLISHSWAHILI

Finally, the subjective welfare questionnaire will be administered to 576 households (4 households in each of 24 clusters in each of 6 districts) and will be downloadable from this site soon.

The survey teams will visit 168 communities. In each community the nearby shops, stalls and markets will be visited to collect local price data (download price questionnaire). Additionally, a structured community questionnaire will be administered to key informants in each community (download Englishdownload Swahili). The community questionnaire contains a price opinion section as an alternative way to collect prices. For a good discussion on various price collection mechanisms in surveys see Gibson and Rozelle’s WBER article.

 

Timing

EDI began piloting questionnaires and training interviewers from June 2007 onwards. Fieldwork started beginning of September 2007 and is expected to last till end of June 2008. In order to keep tight control implementation, the fieldwork is conducted by a relatively small number of 12 interviewers and spread over a longer time period. Such a set-up avoids the typical co-ordination problems faced by larger-scale fast-moving set-ups and allows for maximum control from the project management and co-ordination team. Ultimately it seems like a necessary condition to achieve an acceptable level of non-sampling error.

This assignment is being executed by the following members of staff at EDI:
Project Direction: Joachim De Weerdt
Management and Co-ordination: Respichius Mitti and Abida Nungu
Field Supervision: George Musikula, Davis Matovu, Josephine Rugomora and Pius Sosthenes
Enumeration: Abbanove Gabba, Aissa Issa, Faustine Misinde, Felix Kapinga, Geofrey Bakari, Honoratha Wyclife, Jamary Idrisa, Jesca Nkonjelwa, Kamugisha Robert, Makarius Kiyonga, Resty Simon, Hildephonce Muhashani
Data Entry Co-ordination: Thadeus Rweyemamu
Data Entry Operation: George Gabriel, Justina Katoke, Amina Suedi, Frida George

Publications resulting from this project:

Gazeaud, Jules. 2017. Are PMT Performances Vulnerable to Measurement Errors in Consumption? Evidence from a Survey Experiment in Tanzania. Mimeo. CERDI, University of Auvergne. Download paper

Amaye, Hannah. 2017.  Urbanization and the Two Tails of Malnutrition in Tanzania. LICOS DIscussion Paper. Download paper

Friedman, Jed, Kathleen Beegle, Joachim De Weerdt and John Gibson. Forthcoming. Decomposing Response Error in Food Consumption Measurement: implications for survey design from a randomized survey experiment in Tanzania”. Food Policy. World Bank Policy Research Working Paper 7505.

Dillon, Brian, Joachim De Weerdt and Ted O’Donoghue. 2016. “Paying More for Less: Why Don’t Households in Tanzania Take Advantage of Bulk Discounts?” Mimeo

Ravallion, Martin, Kristen Himelein, and Kathleen Beegle. 2016. “Can Subjective Questions on Economic Welfare Be Trusted? Evidence for Three Developing Countries.” Economic Development and Cultural Change. Economic Development and Cultural Change 64(4): 697–726

Ravallion, Martin, Kristen Himelein, and Kathleen Beegle. 2016. “Can Subjective Questions on Economic Welfare Be Trusted? Evidence for Three Developing Countries.” Economic Development and Cultural Change. World Bank Policy Research Working Paper 6726.

De Weerdt, Joachim, Kathleen Beegle, Jed Friedman and John Gibson. 2016. The Challenge of Measuring Hunger through Survey. Economic Development and Cultural Change, 64(4): 727–758. download pdf

Friedman, Jed, Kathleen Beegle, Joachim De Weerdt and John Gibson. 2015. Decomposing Response Error in Food Consumption Measurement: implications for survey design from a randomized survey experiment in Tanzania”. Mimeo.

Gibson, John, Kathleen Beegle, Joachim De Weerdt and Jed Friedman. 2015. What Does Variation in Household Survey Methods Reveal About the Nature of Measurement Errors in Consumption Estimates? Oxford Bulletin of Economics and Statistics 77(3): 466-474.

Beegle, Kathleen, Joachim De Weerdt, Jed Friedman and John Gibson. 2012. Methods of Household Consumption Measurement through Surveys:  Experimental Results from Tanzania. Journal of Development Economics 98:3-18.

Bardasi, Elena, Kathleen Beegle, Andrew Dillon and Pieter Serneels. 2011. Do Labor Statistics Depend on How and to Whom the Questions are Asked? Results from a Survey Experiment in Tanzania. World Bank Economic Review 25(3): 418 – 447

Dillon, Andrew, Elena Bardasi, Kathleen Beegle and Pieter Serneels. 2012. Explaining Variation in Child Labor Statistics. Journal of Development Economics, 98 (1): 136-147.